Status of Fits Regarding Plug Door Simulations

David Kapukchyan
October 3, 2016

Exploring Second Peak like structure in Reconstructed energy

- Noticed odd behavior at higher energies in the 20.4 cm thickness
- First started by checking overlap
 - No overlap without piston up to 21.85 cm
 - Loss of piston not an issue since only looking at $\eta=2.0$
- Reran 20.4 cm thickness 3 more times to check if statistical
- Ran 21.8 cm thickness 2 times as a check
- Also ran Thicknesses: 7.5, 12.5, 15.0, 17.5 once.
- The following histograms use the following convention in labeling
 - The underscore ("_") character is equivalent to a dot (".") so "7_5" means a thickness of 7.5 cm

Overlapped Histograms

Number of Events vs. Reco Pi- Energy 0_1 Sooo Sunts 2_55 5_1 7_5 10_2 12_5 15 17_5 20_4_v2 4000 21_8_v1 3000 2000 1000 35 40 Reco Pi- E(GeV) 15 20 25 10 30

The 4 20.4 cm Histograms

The 2 21.8 cm Histograms

Attempt at Fitting a Sum of Gaussians

- Tried to fit histograms to a sum of two Gaussians
- Seemed to work well for the 10.2 cm but not 20.4 cm
 - This could either be due to my fitting method or it may be that two Gaussians are not enough to describe the histograms
- There is a distinct "flatness" at larger thicknesses that seems very non Gaussian
- Probably not an issue since we are not making the door that thick but understanding it may explain why two Gaussians or more begin to appear

Conclusions and Goals

- The smearing seems to start at about 7.5 cm based on the histograms
- Based on the fit it seems the smearing in the 10.2 cm histogram can be explained by a second Gaussian.
- However for 20.4 cm it seems two Gaussians is not enough perhaps three may work better
- Possible reasons for strange behavior
 - Back scattering from plug door
 - Punch through plug door but not calorimeters
 - Particles showering in plug door?
 - Particles getting lost through scattering in the plug door
- May need to start looking at EMCAL, HCAL, and Black Hole energies individually to see where the energy is going.

Backup Slides

With Piston

Without Piston

